
Nov 7 , 2016 Solution
Analysis 1 - FINAL Exam - Semester I

1. Let K be the set of functions from {0, 1} to N. Show that K is countable. Let M be the set of
functions from N to N. Show that M is uncountable.

Solution: Let T : K −→ N such that T (f) = 2f(0)3f(1). Then by prime factorization theorem T
is injective. Therefore there is a bijection from Range of T ⊂ N to K. Hence K is countable.

Now, let us prove that M is uncountable. Assume that there exists an F which is a bijection from
N to M . Let g ∈ M defined by g(n) = (F (n))(n) + 1. Then, g 6= F (n) for every n ∈ N. Hence, g
does not belong to the range of F , which is a contradiction. �

2. Let {vn} be the sequence defined by v1 = 1 and vn+1 = (v2n + 1
2n )

1
2 for n ≥ 1. Show that

limn→∞ vnexists. Find the limit.

Solution: Since vn+1 = (v2n + 1
2n )

1
2 we have v2n+1 = v2n + 1

2n .

Therefore it is clear that v2n+1 = Σnk=0
1
2k

So vn+1 = (Σnk=0
1
2k

)
1
2

This clearly converges since it is a geometric series with common ratio 1/2 which is less than 1 and

limn→∞ vn = (Σ∞k=0
1
2n )

1
2 = 2

1
2 �

3. Let f, g : R→ R be continuous functions. Show that h : R→ R defined by h(x) = min{f(x), g(x)}
is a continuous function. Show that the converse is not true.

Show that if f, g are differentiable at c and f(c) 6= g(c) then h is differentiable at c.

Solution: h(x) = min{f(x), g(x)} = f(x)+g(x)
2 − |f(x)−g(x)|2 . Since linear combination and modulus

of continuous functions are continuous, h is continuous.
To show that converse is not true,

let f(x) =

{
0 if x ≤ 0

1 if x > 0

and let g(x) =

{
1 if x ≤ 0

0 if x > 0

Then h is constant zero function, which is continuous on R whereas f and g are not continuous at
zero.

Since f(c) 6= g(c) ,with out loss of generality we can assume that f(c) < g(c). Since they are
continuous there exists an open interval around c , say U such that f(x) < g(x) for every x ∈ U .
Therefore h(x) = min{f(x), g(x)} = f(x) on U . Since f is differentiable at c ∈ U , so is h. �

4. Let m : (0, 1) → R be a continuous function. Suppose {m(x) : x ∈ R} ⊆ N. Show that m is a
constant function.

Solution: Suppose m is not constant, then there exists x and y in R such that m(x) + 1 ≤ m(y)
Then by intermediate value theorem there exists a z between x and y such that m(z) = m(x)+1/2.
This will contradict the fact that range of m is contained in N. �
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5. Suppose k ∈ N and B1, · · · , Bk are strictly positive. Show that

(a) limn→∞ k
1
n = 1.

(b) limn→∞(B1
n +B2

n + ...+Bk
n)

1
n = B where B = Max{Bj : 1 ≤ j ≤ k}

Solution : (a) Let ε > 0 be arbitrary. From archimedes principle, one can find N ∈ N such that
k ≤ 1 + nε for n ≥ N . Now, 1 ≤ k ≤ (1 + ε)n for every n ≥ N , since 1 + nε ≤ (1 + ε)n. Then,

1 ≤ k 1
n ≤ 1 + ε for every n ≥ N .

Therefore |k 1
n − 1| ≤ ε for every n ≥ N . Hence limn→∞ k

1
n = 1.

(b) Since Bi ≥ 0, we have Bn ≤ (B1
n +B2

n + ...+Bk
n) ≤ (kBn)

Therefore B ≤ (B1
n +B2

n + ...+Bk
n)

1
n ≤ (kBn)

1
n

Taking limit on both inequalities and using (a) we get limn→∞(B1
n +B2

n + ...+Bk
n)

1
n = B. �

6. Let a, b be real numbers with a < b, and let f : [a, b] → R be a continuous function. Suppose f is
differentiable (a, b) and f ′(x) 6= 0 for every x ∈ (a, b). 1)Show that f is one to one.
2) Show that either f ′(x) > 0 for all x ∈ (a, b) or f ′(x) < 0 for all x ∈ (a, b).

Solution : It is enough to prove that f is monotonically increasing or decreasing. If not, let us
assume that there exists x,y,z ∈ R with x < y < z such that

f(x) < f(y) and f(z) < f(y) or (1)

f(x) > f(y) and f(y) < f(z). (2)

Since f is continuous on [x, y] it attains maximum and minimum. Let

f(α) = sup
z∈[x,y]

f(z) (3)

f(β) = inf
z∈[x,y]

f(z) (4)

If (1) happens α will not be x or y. Similarily if (2) happens then β will not be x or y. In either cases
f attains a local maximum or minimum at α or β, which will contradict the fact that f ′(x) 6= 0 for
every x ∈ [a, b]. So f is monotonically increasing or decreasing. Hence f ′ is either strictly positive
or negative.

7. State and prove Taylor’s theorem for real valued function on open subintervals of R

Solution : Statement of Theorem : Suppose f is a real function on [a, b], n is a positive
integer, fn−1 is continuous on [a, b], fn(t) exists for every t ∈ (a, b). Let α, β be distinct points of

[a, b], and define P (t) = Σn−1k=0
fk(α)
k! (t−α)k. Then there exists a point x between α and β such that

f(β) = P (β) + fn(x)
n! (β − α)n.

Proof : Let M be the number defined by

f(β) = P (β) +M(β − α)n (5)
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and put
g(t) = f(t)− P (t)−M(t− α)n (a ≤ t ≤ b). (6)

We have to show that n!M = fn(x) for some x between α and β. By (5) and (6)

gn(t) = fn(t)− n!M (7)

Hence the proof will be complete if we can show that gn(x) = 0 for some x between α and β. Since
P k(α) = fk(α) for k = 0, ..., n− 1, we have

g(α) = g′(α) = ... = gn−1(α) = 0 (8)

Our choice of M shows that g(β) = 0, so that g′(x1) = 0 for some x1 between α and β, by the
Mean value theorem. Since g′(α) = 0, we conclude similarly that g′′(x2) = 0 for some x2 between
α and x1. After n steps we arrive at the conclusion that gn(xn) = 0 for some xn between α and
xn−1, that is, between α and β. �
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