1. Let K be the set of functions from $\{0,1\}$ to N. Show that K is countable. Let M be the set of functions from N to N. Show that M is uncountable.

Solution: Let $T: K \longrightarrow \mathbb{N}$ such that $T(f) = 2^{f(0)} 3^{f(1)}$. Then by prime factorization theorem T is injective. Therefore there is a bijection from Range of $T \subset \mathbb{N}$ to K. Hence K is countable.

Now, let us prove that M is uncountable. Assume that there exists an F which is a bijection from \mathbb{N} to M. Let $g \in M$ defined by g(n) = (F(n))(n) + 1. Then, $g \neq F(n)$ for every $n \in \mathbb{N}$. Hence, g does not belong to the range of F, which is a contradiction. \Box

2. Let $\{v_n\}$ be the sequence defined by $v_1 = 1$ and $v_{n+1} = (v_n^2 + \frac{1}{2^n})^{\frac{1}{2}}$ for $n \ge 1$. Show that $\lim_{n\to\infty} v_n$ exists. Find the limit.

Solution: Since $v_{n+1} = (v_n^2 + \frac{1}{2^n})^{\frac{1}{2}}$ we have $v_{n+1}^2 = v_n^2 + \frac{1}{2^n}$. Therefore it is clear that $v_{n+1}^2 = \sum_{k=0}^n \frac{1}{2^k}$ So $v_{n+1} = (\sum_{k=0}^n \frac{1}{2^k})^{\frac{1}{2}}$ This clearly converges since it is a geometric series with common ratio 1/2 which is less than 1 and $\lim_{n\to\infty} v_n = (\sum_{k=0}^\infty \frac{1}{2^n})^{\frac{1}{2}} = 2^{\frac{1}{2}}$

3. Let $f, g : \mathbb{R} \to \mathbb{R}$ be continuous functions. Show that $h : \mathbb{R} \to \mathbb{R}$ defined by $h(x) = \min\{f(x), g(x)\}$ is a continuous function. Show that the converse is not true.

Show that if f, g are differentiable at c and $f(c) \neq g(c)$ then h is differentiable at c.

Solution: $h(x) = \min\{f(x), g(x)\} = \frac{f(x)+g(x)}{2} - \frac{|f(x)-g(x)|}{2}$. Since linear combination and modulus of continuous functions are continuous, h is continuous. To show that converse is not true.

$$\text{let } f(x) = \begin{cases} 0 & \text{if } x \le 0\\ 1 & \text{if } x > 0 \end{cases} \\ \text{and let } g(x) = \begin{cases} 1 & \text{if } x \le 0\\ 0 & \text{if } x > 0 \end{cases}$$

Then h is constant zero function, which is continuous on \mathbb{R} whereas f and g are not continuous at zero.

Since $f(c) \neq g(c)$, with out loss of generality we can assume that f(c) < g(c). Since they are continuous there exists an open interval around c, say U such that f(x) < g(x) for every $x \in U$. Therefore $h(x) = \min\{f(x), g(x)\} = f(x)$ on U. Since f is differentiable at $c \in U$, so is h.

4. Let $m : (0,1) \to \mathbb{R}$ be a continuous function. Suppose $\{m(x) : x \in \mathbb{R}\} \subseteq \mathbb{N}$. Show that m is a constant function.

Solution: Suppose *m* is not constant, then there exists *x* and *y* in \mathbb{R} such that $m(x) + 1 \le m(y)$. Then by intermediate value theorem there exists a *z* between *x* and *y* such that m(z) = m(x) + 1/2. This will contradict the fact that range of *m* is contained in \mathbb{N} .

- 5. Suppose $k \in \mathbb{N}$ and B_1, \dots, B_k are strictly positive. Show that
 - (a) $\lim_{n \to \infty} k^{\frac{1}{n}} = 1.$
 - (b) $\lim_{n\to\infty} (B_1^n + B_2^n + \dots + B_k^n)^{\frac{1}{n}} = B$ where $B = Max\{B_j : 1 \le j \le k\}$

Solution : (a) Let $\varepsilon > 0$ be arbitrary. From archimedes principle, one can find $N \in \mathbb{N}$ such that $k \leq 1 + n\varepsilon$ for $n \geq N$. Now, $1 \leq k \leq (1 + \varepsilon)^n$ for every $n \geq N$, since $1 + n\varepsilon \leq (1 + \varepsilon)^n$. Then, $1 \leq k^{\frac{1}{n}} \leq 1 + \varepsilon$ for every $n \geq N$.

Therefore $|k^{\frac{1}{n}} - 1| \leq \varepsilon$ for every $n \geq N$. Hence $\lim_{n \to \infty} k^{\frac{1}{n}} = 1$.

(b) Since $B_i \ge 0$, we have $B^n \le (B_1^{\ n} + B_2^{\ n} + \ldots + B_k^{\ n}) \le (kB^n)$ Therefore $B \le (B_1^{\ n} + B_2^{\ n} + \ldots + B_k^{\ n})^{\frac{1}{n}} \le (kB^n)^{\frac{1}{n}}$ Taking limit on both inequalities and using (a) we get $\lim_{n\to\infty} (B_1^{\ n} + B_2^{\ n} + \ldots + B_k^{\ n})^{\frac{1}{n}} = B$. \Box

6. Let a, b be real numbers with a < b, and let f : [a, b] → ℝ be a continuous function. Suppose f is differentiable (a, b) and f'(x) ≠ 0 for every x ∈ (a, b). 1)Show that f is one to one.
2) Show that either f'(x) > 0 for all x ∈ (a, b) or f'(x) < 0 for all x ∈ (a, b).

Solution : It is enough to prove that f is monotonically increasing or decreasing. If not, let us assume that there exists $x, y, z \in \mathbb{R}$ with x < y < z such that

$$f(x) < f(y) \quad and \quad f(z) < f(y) \quad or \tag{1}$$

$$f(x) > f(y) \text{ and } f(y) < f(z).$$
 (2)

Since f is continuous on [x, y] it attains maximum and minimum. Let

$$f(\alpha) = \sup_{z \in [x,y]} f(z) \tag{3}$$

$$f(\beta) = \inf_{z \in [x,y]} f(z) \tag{4}$$

If (1) happens α will not be x or y. Similarly if (2) happens then β will not be x or y. In either cases f attains a local maximum or minimum at α or β , which will contradict the fact that $f'(x) \neq 0$ for every $x \in [a, b]$. So f is monotonically increasing or decreasing. Hence f' is either strictly positive or negative.

7. State and prove Taylor's theorem for real valued function on open subintervals of ${\mathbb R}$

Solution : Statement of Theorem : Suppose f is a real function on [a, b], n is a positive integer, f^{n-1} is continuous on [a, b], $f^n(t)$ exists for every $t \in (a, b)$. Let α, β be distinct points of [a, b], and define $P(t) = \sum_{k=0}^{n-1} \frac{f^k(\alpha)}{k!} (t-\alpha)^k$. Then there exists a point x between α and β such that $f(\beta) = P(\beta) + \frac{f^n(x)}{n!} (\beta - \alpha)^n$.

Proof : Let M be the number defined by

$$f(\beta) = P(\beta) + M(\beta - \alpha)^n \tag{5}$$

and put

$$g(t) = f(t) - P(t) - M(t - \alpha)^n \quad (a \le t \le b).$$
(6)

We have to show that $n!M = f^n(x)$ for some x between α and β . By (5) and (6)

$$g^n(t) = f^n(t) - n!M \tag{7}$$

Hence the proof will be complete if we can show that $g^n(x) = 0$ for some x between α and β . Since $P^k(\alpha) = f^k(\alpha)$ for k = 0, ..., n - 1, we have

$$g(\alpha) = g'(\alpha) = \dots = g^{n-1}(\alpha) = 0$$
 (8)

Our choice of M shows that $g(\beta) = 0$, so that $g'(x_1) = 0$ for some x_1 between α and β , by the Mean value theorem. Since $g'(\alpha) = 0$, we conclude similarly that $g''(x_2) = 0$ for some x_2 between α and x_1 . After n steps we arrive at the conclusion that $g^n(x_n) = 0$ for some x_n between α and x_{n-1} , that is, between α and β .